
@ OraInternals, LLC Riyaj Shamsudeen

Cardinality feedback to resolve a Cache buffers chains latch
contention issue

Earlier, I blogged about resolving cache buffers chains latch contention in my earlier
entry , in which, root cause was excessive index access due to Nested Loops join.
Recently, we resolved another similar issue.

Problem

CPU usage was very high in production database server in user% mode. Dynamic
performance view v$session_wait indicated excessive waits for latch contention. Output
from a script wait_details.sql shows that many sessions were waiting for ‘latch free’
event. Also, address for these latch children are the same, meaning all these sessions are
trying to access one latch children.

SQL> @wait_details

 SID PID EVENT USERNAME STATE WAIT_TIME WIS P1_P2_P3_TEXT ------ ------- ------------- --------- ---------- ------------------- --------- ----- ---

 91 24242 latch free CSTMOP WAITING 0 0 address 69476807024-number 98-tries 0
 101 4884 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0 116 23899 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0
 187 19499 latch free CSTMOP WAITING 0 0 address 69476807024-number 98-tries 0
 108 23498 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 3 194 23701 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0
 202 26254 latch free CSTMOP WAITING 0 0 address 69476807024-number 98-tries 4
 220 23274 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0 227 23643 latch free CSTMOP WAITED KNOWN TIME 2 0 address
69476807024-number 98-tries 0
 331 26519 latch free CSTMOP WAITING 0 0 address 69476807024-number 98-tries 0
 297 23934 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 3

We can identify SQL causing latch contention querying v$session_wait. From the output
below, SQL with hash_value 1509082258 is suspicious since there are many sessions
executing that SQL and waiting / waited recently for ‘latch free’ event.

 select substr(w.event, 1, 28) event, sql_hash_value, count(*) from v$session_wait w, v$session s, v$process p
where s.sid=w.sid and p.addr = s.paddr and s.username is not null
and event not like '%pipe%' and event not like 'SQL*%' group by substr(w.event, 1, 28), sql_hash_value;

@ OraInternals, LLC Riyaj Shamsudeen

EVENT SQL_HASH_VALUE COUNT(*) ------------------------------ -------------- ----------
enqueue 3740270 1 enqueue 747790152 1 enqueue 1192921796 1
latch free 622474477 3 latch free 1509082258 58 <--- latch free 1807800540 1
global cache null to x 3740270 1 global cache null to x 1473456670 1 global cache null to x 3094935671 1
db file sequential read 109444956 1

Mapping to object_name

We need to map child latch address 1509082258 to an object. Fortunately, using a script
latch_cbc_to_buf.sql written earlier we were able to do that mapping quickly. This script
prints touch count for those buffers too.

REM Not all columns are shown below.

SQL>@latch_cbc_to_buf.sql
HLADDR TCH OWNER OBJECT_NAME OBJECT_TYPE
---------------- ---------- ------------------------------ ------------------------ -----
------------- 000000102D23F170 336 CCWINV CUS_MTL_MATERIAL_TXNS_C3 INDEX
000000102D23F170 51 APPLSYS FND_CONCURRENT_REQUESTS TABLE
000000102D23F170 47 AR HZ_PARTY_SITES TABLE
...

From the output above, we know that CUS_MTL_MATERIAL_TXNS_C3 index is at
the heart of this latch contention issue since that object has higher touch count than other
objects protected by that child latch.

SQL and execution plan

Querying v$sql, SQL associated with this hash value was retrieved. Execution plan for
this SQL is very long and has many branches joined by ‘union all’ operation. Searching
for the index CUS_MTL_MATERIAL_TXNS_C3 in the execution plan shows that use
of this index, in the last two branches of execution plan. For clarity, only part of the plan
is printed below. [Note: v$sql_plan also confirmed this execution plan.]

@ OraInternals, LLC Riyaj Shamsudeen

explain plan for sql_here ;
select * from table(dbms_xplan.display);
122	VIEW		1					
123	SORT GROUP BY		1		124	VIEW		1
125	SORT UNIQUE		1					
*126	TABLE ACCESS BY INDEX ROWID	MTL_MATERIAL_TRANSACTIONS	1		127	NESTED LOOPS		1
128	MERGE JOIN CARTESIAN		1					
129	NESTED LOOPS		1		130	TABLE ACCESS BY INDEX ROWID	RCV_TRANSACTIONS_INTERFACE	39
*131	INDEX FULL SCAN	CUS_RCV_TXNS_INTERFACE_C3	39					
*132	TABLE ACCESS BY INDEX ROWID	RCV_SHIPMENT_HEADERS	1		*133	INDEX UNIQUE SCAN	RCV_SHIPMENT_HEADERS_U1	1
134	BUFFER SORT		71					
135	INLIST ITERATOR				136	TABLE ACCESS BY INDEX ROWID	CUS_INV_RTL_DOCUMENTS	71
*137	INDEX RANGE SCAN	CUS_INV_RTL_DOCUMENTS_N4	71					
138	INLIST ITERATOR				*139	INDEX RANGE SCAN	CUS_MTL_MATERIAL_TXNS_C3	1
--

Line #128 is a key indicator of the problem. Rows from steps 129 and 134 are joined
using cartesian merge join method! Obviously a cartesian join will generate huge amount
of rows as there will be no join conditions between those two row sources [similar to a
cartesian product]. Resultant rows of this cartesian join are, further, joined using Nested
loops join method to MTL_MATERIAL_TRANSACTIONS through the index
CUS_MTL_MATERIAL_TXNS_C3. The reason CBO chose a cartesian join is that the
cardinality estimate at step 129 is 1, which is incorrect [but that is a different topic
altogether].

So far, we know why that index blocks are accessed frequently: A side effect of cartesian
merge join producing enormous amount of rows. If this SQL is executed from many
different sessions concurrently, effect of latch contention on index root block will be
magnified.

What changed ?

This is an existing application and was working fine until few hours earlier. So, what
changed?

Statistics. As a process, we colllect statistics in a cloned copy of production database and
then import those statistics in to production database. There were few other reorgs
performed over the weekend, but that doesn’t seem to have any negative effect. We were
fortunate enough to have another development environment with 1 month old data and
statistics. Comparing execution plan for that branch of SQL in the development instance,
reveals something peculiar and interesting.

@ OraInternals, LLC Riyaj Shamsudeen

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 1 | 33 | 1 | SORT GROUP BY | | 1 | 33
| 2 | VIEW | | 1 | 33
| | | 3 | SORT UNIQUE | | 1 | 122
| 4 | TABLE ACCESS BY INDEX ROWID | RCV_TRANSACTIONS_INTERFACE | 1 | 14
| 5 | NESTED LOOPS | | 1 | 122 | 6 | NESTED LOOPS | | 1 | 108
| 7 | NESTED LOOPS | | 1 | 62
| 8 | INLIST ITERATOR | | | | 9 | TABLE ACCESS BY INDEX ROWID| CUS_INV_RTL_DOCUMENTS | 73 | 2336
|* 10 | INDEX RANGE SCAN | CUS_INV_RTL_DOCUMENTS_N4 | 73 |
| 11 | INLIST ITERATOR | | | |* 12 | TABLE ACCESS BY INDEX ROWID| MTL_MATERIAL_TRANSACTIONS | 1 | 30
* 13	INDEX RANGE SCAN	CUS_MTL_MATERIAL_TXNS_C3	1					
* 14	TABLE ACCESS BY INDEX ROWID	RCV_SHIPMENT_HEADERS	1	46	* 15	INDEX RANGE SCAN	RCV_SHIPMENT_HEADERS_N2	1
* 16	INDEX RANGE SCAN	CUS_RCV_TXNS_INTERFACE_C3	5					
--
Predicate information:
--------------------- ...
 16 - access("RT"."SHIPMENT_HEADER_ID"="RSH"."SHIPMENT_HEADER_ID")
 filter("RT"."SHIPMENT_HEADER_ID" IS NOT NULL) ...

Cardinality estimates for RCV_TRANSACTIONS_INTERFACE, for identical
predicates, are 5 (Step #16)in the efficient plan (development database) and 39 in the
inefficient plan (Production database). This increase in cardinality caused optimizer to
choose a completely different plan. Interestingly enough,
RCV_TRANSACTIONS_INTERFACE is an interface table and while collecting
statistics on this table in pre-production environment, we had a special case transaction.
This invalid state of the table generated not-so-good statistics, which was transferred to
production.

Easy enough, recollecting statistics on RCV_TRANSACTIONS_INTERFACE table
reverted execution plan back to older efficient plan.

Summary

In summary, we were able to pin-point the object through cardinality feedback method.
With few scripts, we were able to identify the object and resolved the root cause of this
performance issue.

Oracle version 9.2.0.8 Solaris platform.
[To read more about cardinality feedback, refer Wolfgang's excellent presentation.]

