Cardinality feedback to resolve a Cache buffers chainslatch
contention issue

Earlier, | blogged about resolving cache bufferainot latch contention in my earlier
entry, in which, root cause was excessive index acaessalNested Loops join.
Recently, we resolved another similar issue.

Problem

CPU usage was very high in production databasesarnuser% mode. Dynamic
performance view v$session_wait indicated excessaits for latch contention. Output
from a scriptwait_details.sgshows that many sessions were waiting for ‘latele’fr

event. Also, address for these latch childrenla@esame, meaning all these sessions are
trying to access one latch children.

SQ.> @wit _details

SID PID EVENT USERNAME STATE WAIT_TIME WIS P1_P2_P3_TEXT

91 24242 Tatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

101 4884 1latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

116 23899 Tlatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

187 19499 Tlatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

108 23498 Tlatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 3

194 23701 Tlatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

202 26254 Tlatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 4

220 23274 latch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

227 23643 Tlatch free CSTMOP WAITED KNOWN TIME 2 0 address
69476807024-number 98-tries 0

331 26519 Tlatch free CSTMOP WAITING 0 0 address
69476807024-number 98-tries 0

297 23934 Tlatch free 3CSTMOP WAITING 0 0 address

69476807024-number 98-tries

We can identify SQL causing latch contention quegyr$session_wait. From the output
below, SQL with hash_value 1509082258 is suspicsinse there are many sessions
executing that SQL and waiting / waited recently‘fatch free’ event.

select substr(w.event, 1, 28) event, sql_hash_value, count(*)
from v$session_wait w, v§session s, v$process p

where s.sid=w.sid

and p.addr = s.paddr

and s.username is not null

and event not like '%pipe%’

and event not Tike 'sQL*%'

group by substr(w.event, 1, 28), sql_hash_value;

@ Oralnternals, LLC Riyaj Shamsudeen

EVENT SQL_HASH_VALUE COUNT(*)
enqueue 3740270 1
enqueue 747790152 1
enqueue 1192921796 1
Tatch free 622474477 3
latch free 1509082258 58 <---
Tatch free 1807800540 1
global cache null to x 3740270 1
global cache null to x 1473456670 1
global cache null to x 3094935671 1
db file sequential read 109444956 1

Mapping to object_name

We need to map child latch address 1509082258 tbgect. Fortunately, using a script
latch_cbc_to_buf.salritten earlier we were able to do that mappingkiy. This script
prints touch count for those buffers too.

REM Not all columms are shown bel ow.

SQL>@latch_cbc_to_buf.sql
HLADDR TCH OWNER OBJECT_NAME
OBJECT_TYPE

000000102D23F170 336 CCWINV CUS_MTL_MATERIAL_TXNS_C3 INDEX
000000102D23F170 51 APPLSYS FND_CONCURRENT_REQUESTS TABLE
000000102D23F170 47 AR HZ_PARTY_SITES TABLE

From the output above, we know that CUS_MTL_MATERIAXNS_C3 index is at
the heart of this latch contention issue since obgtct has higher touch count than other
objects protected by that child latch.

SQL and execution plan

Querying v$sql, SQL associated with this hash valae retrieved. Execution plan for
this SQL is very long and has many branches jomedinion all' operation. Searching
for the index CUS_MTL_MATERIAL_TXNS_C3 in the exdan plan shows that use
of this index, in the last two branches of exeaufan. For clarity, only part of the plan
is printed below. [Note: v$sql_plan also confirntbid execution plan.]

@ Oralnternals, LLC Riyaj Shamsudeen

ex?1ain plan for sql_here ;
select * from table(dbms_xplan.display);

122 VIEW 1
123 SORT GROUP BY 1
124 VIEW 1
125 SORT UNIQUE 1
*126 TABLE ACCESS BY INDEX ROWID MTL_MATERIAL_TRANSACTIONS 1
127 NESTED LOOPS 1
128 MERGE JOIN CARTESIAN 1
129 NESTED LOOPS 1
130 TABLE ACCESS BY INDEX ROWID RCV_TRANSACTIONS_INTERFACE 39
*131 INDEX FULL SCAN CUS_RCV_TXNS_INTERFACE_C3 39
*132 TABLE ACCESS BY INDEX ROWID RCV_SHIPMENT_HEADERS 1
*133 INDEX UNIQUE SCAN RCV_SHIPMENT_HEADERS_U1l 1
134 BUFFER SORT 71
135 INLIST ITERATOR

136 TABLE ACCESS BY INDEX ROWID CUS_INV_RTL_DOCUMENTS 71
*137 INDEX RANGE SCAN CUS_INV_RTL_DOCUMENTS_N4 71
138 INLIST ITERATOR

*139 INDEX RANGE SCAN CUS_MTL_MATERIAL_TXNS_C3 1

Line #128 is a key indicator of the problem. Rowesf steps 129 and 134 are joined
using cartesian merge join method! Obviously ass#ah join will generate huge amount
of rows as there will be no join conditions betwdlepse two row sources [similar to a
cartesian product]. Resultant rows of this cartefa are, further, joined using Nested
loops join method to MTL_MATERIAL_TRANSACTIONS thugh the index
CUS_MTL_MATERIAL_TXNS_C3. The reason CBO chose a&sian join is that the
cardinality estimate at step 129 is 1, which i®mect [but that is a different topic
altogether].

So far, we know why that index blocks are accefszpliently: A side effect of cartesian
merge join producing enormous amount of rows. i 8QL is executed from many
different sessions concurrently, effect of latchtemtion on index root block will be
magnified.

What changed ?

This is an existing application and was workingefimtil few hours earlier. So, what
changed?

Statistics. As a process, we colllect statistica aloned copy of production database and
then import those statistics in to production dassb There were few other reorgs
performed over the weekend, but that doesn’t seemate any negative effect. We were
fortunate enough to have another development emviemt with 1 month old data and
statistics. Comparing execution plan for that braotSQL in the development instance,
reveals something peculiar and interesting.

@ Oralnternals, LLC Riyaj Shamsudeen

| Id | operation | Name | Rows | Bytes
| cost (%CPUL) |

0 SELECT STATEMENT 1 33
1 SORT GROUP BY 1 33
2 VIEW 1 33
3 SORT UNIQUE 1 122
4 TABLE ACCESS BY INDEX ROWID RCV_TRANSACTIONS_INTERFACE 1 14
5 NESTED LOOPS 1 122
6 NESTED LOOPS 1 108
7 NESTED LOOPS 1 62
8 INLIST ITERATOR
9 TABLE ACCESS BY INDEX ROWID| CUS_INV_RTL_DOCUMENTS 73 2336
* 10 INDEX RANGE SCAN CUS_INV_RTL_DOCUMENTS_N4 73
11 INLIST ITERATOR
* 12 TABLE ACCESS BY INDEX ROWID| MTL_MATERIAL_TRANSACTIONS 1 30
* 13 INDEX RANGE SCAN CUS_MTL_MATERIAL_TXNS_C3 1
* 14 TABLE ACCESS BY INDEX ROWID RCV_SHIPMENT_HEADERS 1 46
* 15 INDEX RANGE SCAN RCV_SHIPMENT_HEADERS_N2 1
* 16 INDEX RANGE SCAN CUS_RCV_TXNS_INTERFACE_C3 5

“'i6 - access("RT"."SHIPMENT_HEADER_ID"="RSH"."SHIPMENT_HEADER_ID")
filter("RT"."SHIPMENT_HEADER_ID" IS NOT NULL)

Cardinality estimates for RCV_TRANSACTIONS_INTERFE(Cfor identical
predicates, are 5 (Step #16)in the efficient [pthevelopment database) and 39 in the
inefficient plan (Production database). This inseean cardinality caused optimizer to
choose a completely different plan. Interestinglggh,
RCV_TRANSACTIONS_INTERFACE is an interface tabledamhile collecting
statistics on this table in pre-production envir@mty we had a special case transaction.
This invalid state of the table generated not-soegstatistics, which was transferred to
production.

Easy enough, recollecting statistics on RCV_TRANSKAINS INTERFACE table
reverted execution plan back to older efficiennpla

Summary
In summary, we were able to pin-point the objeobulgh cardinality feedback method.
With few scripts, we were able to identify the aftjand resolved the root cause of this

performance issue.

Oracle version 9.2.0.8 Solaris platform.
[To read more about cardinality feedback, r&f&ifgang's excellent presentatign.

@ Oralnternals, LLC Riyaj Shamsudeen

